This work was supported by the Deutsche Forschungsgemeinschaft and Fonds der Chemischen Industrie.

## References

Bekaroglu, Ö., Breer, H., Endres, H., Keller, H. J. \& Nam Gung, H. (1977). Inorg. Chim. Acta, 21, 183-186.
Berdesinski, W. \& Nuber, B. (1966). Neues Jahrb. Mineral. Abh. 104, 113-146.
Breer, H., Endres, H., Keller, H. J. \& Martin, R. (1978). Acta Cryst. B34, 2295-2297.

Endres, H., Keller, H. J., Martin, R. \& Nötzel, S. (1979). To be published.

Endres, H., Keller, H. J., Martin, R. \& Traeger, U. (1979). Acta Cryst. Submitted.

International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press.

Johnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee.
Keller, H. J., Martin, R. \& Traeger, U. (1978). Z. Naturforsch. Teil. B, 33, 1263-1266.
Matsumoto, N., Yamashita, M., Kida, S. \& Ueda, I. (1979). Acta Cryst. B35, 1458-1460.

Stewart, J. M., Kundell, F. A. \& Baldwin, J. C. (1970). The XRAY 70 system. Computer Science Center, Univ. of Maryland, College Park, Maryland.

# Structure of Dibromobis(1,2-diaminoethane)platinum(IV) 3,4-Dihydroxy-3-cyclobutene-1,2-dionate Dihydrate 

By Heimo Jürgen Keller and Ulrich Traeger*<br>Anorganisch-Chemisches Institut der Universität, Im Neuenheimer Feld 270, D-6900 Heidelberg 1, Federal Republic of Germany

(Received 19 February 1979; accepted 1 May 1979)


#### Abstract

PtBr}_{2}\left(\mathrm{C}_{2} \mathrm{H}_{8} \mathrm{~N}_{2}\right)_{2}\right]\left[\mathrm{C}_{4} \mathrm{O}_{4}\right] .2 \mathrm{H}_{2} \mathrm{O}, \quad \mathrm{C}_{4} \mathrm{H}_{16}\) $\mathrm{Br}_{2} \mathrm{~N}_{4} \mathrm{Pt}^{2+} . \mathrm{C}_{4} \mathrm{O}_{4}^{2-} .2 \mathrm{H}_{2} \mathrm{O}$, monoclinic, $P 2_{1} / n, a=$ 11.038 (19), $b=14.289$ (4), $c=6.983$ (12) $\AA, \beta=$ $132.24(10)^{\circ}, V=815.6 \AA^{3}, d=2.57 \mathrm{Mg} \mathrm{m}^{-3}, Z=2$. The structure was refined to $R=0.079$ for 1553 counter data and consists of six-coordinate $\left[\mathrm{PtBr}_{2}-\right.$ $\left.\mathrm{en}_{2}\right]^{2+}$ units (en $=1,2$-diaminoethane) with planar $\left[\mathrm{C}_{4} \mathrm{O}_{4}\right]^{2-}$ counterions which are strongly hydrogen bonded to each other and to the water molecules in the lattice. The reduced cell has $a=6.984, b=14 \cdot 290$, $c=8.184 \AA, \beta=93.07^{\circ}$.


Introduction. In recent papers we have reported the structure of mixed-valence Wolffram's salt analogues (Endres, Keller, Martin, Nam Gung \& Traeger, 1979). In some cases three-dimensional order is observed in the linear chain compounds (Endres, Keller, Martin \& Traeger, 1979), and it was suggested that this ordering is caused by hydrogen bridges between the complex ligands and the perchlorate counterions. We therefore investigated the system $\left[\mathrm{PtBr}_{2} \mathrm{en}_{2}\right]^{2+}\left[\mathrm{Pten}_{2}\right]^{2+}-$ $\mathrm{C}_{4} \mathrm{H}_{2} \mathrm{O}_{4}$ (squaric acid) - the latter compound being well known for its ability to form hydrogen bridges - in the hope of strengthening the interchain coupling in Wolffram's salt analogues. After hot aqueous solutions

[^0]0567-7408/79/081887-02\$01.00
containing $0.5 \mathrm{mmol}\left[\mathrm{PtBr}_{2} \mathrm{en}_{2}\right]^{2+}$ and 0.5 mmol $\left[\mathrm{Pten}_{2}\right]^{2+}$ are mixed with a hot aqueous solution of $3,4-$ dihydroxy-3-cyclobutene-1,2-dione (squaric acid), the title compound crystallizes in red platelets. \{Analysis for $\left[\mathrm{PtBr}_{2} \mathrm{en}_{2}\right]\left[\mathrm{C}_{4} \mathrm{O}_{4}\right] .2 \mathrm{H}_{2} \mathrm{O}, M_{r}=622 \cdot 9$ : calculated: C 15.40 , N 8.98 , H 3.46, Pt $31.31 \%$; found: C 15.40 , N 8.26, H 3.41, Pt (residue) $32.44 \%$.

Rotating-crystal and Weissenberg photographs ( Cu $K \alpha$ radiation) showed the symmetry and systematic extinctions and established approximate lattice constants. Exact lattice constants (see Abstract) were calculated by least squares (Berdesinski \& Nuber, 1966) from the $\theta$ values of 33 reflections, measured on a diffractometer. Intensity measurements on an automatic single-crystal diffractometer (AED, Siemens, Mo $K \alpha$ radiation, $\theta-2 \theta$ scans, 'five-value method', $4^{\circ}<2 \theta$ $<60^{\circ}$ ) furnished 1553 observed independent intensities. Reflections with $I<3.0 \sigma(I)$ were classified as unobserved. Owing to the small crystal size $(0.04 \times$ $0.05 \times 0.03 \mathrm{~mm}$ ), no absorption correction was applied ( $\mu=14.5 \mathrm{~mm}^{-1}$ ). Observed reflections were corrected for polarization and Lorentz factors. The systematic absences ( $h 0 l$ with $h+l=2 n+1$ and $0 k 0$ with $k=2 n+1$ ) correspond to the space group $P 2_{1} / n$ $\left(C_{2 h}^{3}\right)$. A Patterson synthesis showed the positions of Pt and Br . The positions of $\mathrm{N}, \mathrm{O}$ and C atoms could be located by distance and angle calculations from the © 1979 International Union of Crystallography

Table 1. Atomic coordinates $\left(\times 10^{3}\right)$

|  | $x$ | $y$ | $z$ |
| :--- | :---: | :---: | :---: |
| Pt | 0 | 0 | 0 |
| Br | $205 \cdot 2(3)$ | $471 \cdot 2(2)$ | $225 \cdot 0(4)$ |
| $\mathrm{O}(1)$ | $227(2)$ | $40(1)$ | $699(3)$ |
| $\mathrm{O}(2)$ | $66(2)$ | $346(1)$ | $561(4)$ |
| $\mathrm{O}(3)$ | $324(3)$ | $266(2)$ | $637(4)$ |
| $\mathrm{N}(1)$ | $552(2)$ | $371(1)$ | $664(4)$ |
| $\mathrm{N}(2)$ | $498(3)$ | $428(1)$ | $240(3)$ |
| $\mathrm{C}(1)$ | $594(6)$ | $306(2)$ | $564(6)$ |
| $\mathrm{C}(2)$ | $485(4)$ | $325(2)$ | $275(6)$ |
| $\mathrm{C}(3)$ | $882(3)$ | $481(2)$ | $367(4)$ |
| $\mathrm{C}(4)$ | $33(2)$ | $430(2)$ | $531(4)$ |



Fig. 1. View of the Pt complex unit with the numbering scheme, bond distances ( $\AA$ ) and bond angles $\left({ }^{\circ}\right)$.


Fig. 2. The 3,4-dihydroxy-3-cyclobutene-1,2-dionate dianion with the numbering scheme, bond distances $(\AA)$ and angles $\left({ }^{\circ}\right)$.
maxima of a Fourier synthesis. The refinements resulted in $R=0.120$ with isotropic temperature factors. In the final cycles with anisotropic temperature factors all atoms were refined simultaneously. Refinement converged with $R=0.079$. Atomic coordinates are listed in Table 1.* Calculations were performed with programs of the XRAY system (Stewart, Kundell \& Baldwin, 1970). Scattering factors were derived from International Tables for X-ray Crystallography (1974). The reduced lattice constants were calculated by the

[^1]

Fig. 3. Unit cell of the title compound. All the C atoms (of the diamine ligand and of the squaric acid) and some Br atoms are omitted for clarity. The hydrogen-bond network between $\mathrm{O}(3)-\mathrm{N}(1), \mathrm{O}(3)-\mathrm{O}(2)$ and $\mathrm{O}(1)-\mathrm{N}(2)$ is indicated by broken lines.
procedure from International Tables for X-ray Crystallography (1969).

Discussion. The numbering scheme, bond distances and angles of the Pt complex dication and of the 3,4-dihydroxy-3-cyclobutene-1,2-dione dianion are shown in Figs. 1 and 2. The $\mathrm{Pt}-\mathrm{Br}$ distance in the complex unit is 2.459 (2) $\AA$, which is much shorter than in the Wolffram's salt analogues, but is normal for a $\mathrm{Pt}-\mathrm{Br}$ bond in $\mathrm{Pt}^{\text {lv }}$ complexes. As expected the squaric acid dianion forms strong hydrogen bonds with the N atoms of the ligands, which leads to a structure very different from those of Wolffram's salts. Only $\mathrm{Pt}^{1 \mathrm{v}}$ complex units are built into the lattice and no chains are formed. The hydrogen-bond network is shown in Fig. 3. Characteristic distances in this network are: $\mathrm{O}(1)-\mathrm{N}(2)=$ $2.81(2), \mathrm{O}(1)-\mathrm{N}(2)=2.77(4), \mathrm{O}(3)-\mathrm{N}(1)=$ $2.83(4), \mathrm{O}(3)-\mathrm{O}(2)=2.80(3), \mathrm{O}(3)-\mathrm{O}(2)=$ 2.76 (4) $\AA$. O (1) and $\mathrm{O}(2)$ are from the squaric acid dianion; $\mathrm{O}(3)$ is the water molecule.

We would like to thank Dr H. Endres for helpful discussions. This work was supported by the Deutsche Forschungsgemeinschaft.

## References

Berdesinski, W. \& Nuber, B. (1966). Neues Jahrb. Mineral. Abh. 104, 113-146.
Endres, H., Keller, H. J., Martin, R., Nam Gung, H. \& Traeger, U. (1979). Acta Cryst. B35, 1885-1887.
Endres, H., Keller, H. J., Martin, R. \& Traeger, U. (1979). Acta Cryst. Submitted.

International Tables for X-ray Crystallography (1969). Vol. I, 3rd ed. Birmingham: Kynoch Press.
International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press.

Stewart, J. M., Kundell, F. A. \& Baldwin, J. C. (1970). The XRAY 70 system. Computer Science Center, Univ. of Maryland, College Park, Maryland.


[^0]:    * To whom correspondence should be addressed.

[^1]:    * Lists of structure factors and anisotropic thermal parameters have been deposited with the British Library Lending Division as Supplementary Publication No. SUP 34425 ( 9 pp .). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH 1 2HU, England.

